S.No. |
||
1. |
Co-Digestion of MSW for Efficient Biogas Production Authors: Ravindra Rajpoot, Archana Paranjpe Abstract- The major problem in today’s scenario is the global depletion of energy supply due to the continuing overutilization. As per estimation in few years we will be run out from fossil fuels [1]. It is therefore important to explore new potential sources of energy [2]. India is a tropical country and its temperature condition is very suitable for the fermentation of organic materials throughout the year. Therefore, there is a great prospect of biogas to be used as an alternative source of energy in India. AD is one of the most promising uses of biomass wastes because it provides a source of energy while simultaneously resolving ecological and agrochemical issues [3]. The value of supplement is not reduced by the anaerobic fermentation of manure [4]. References- [1] Bentley R.W., [2002]. Global oil and gas depletion: an overview. Energy policy 30, 189-205. [2] Yadvika., Santosh., Sreekrishnan T. R., Sangeeta Kohli., & Vineet Rana., [2004]. Enhancement of biogas production from solid substrates using different techniques- a review. Bioresource Technology 95, 1–10. [3] Budiyano., Widiasa I N., Johari S., & Sunarso., [2010]. The kinetic of biogas production rate from cattle manure in batch mode. International Journal of Chemical and Biomolecular Engineering 3(1), 39- 44. [4] Alvarez R., & Lide´n G., [2008]. The effect of temperature variation on biomethanation at high altitude, Biores. Technology. 99, 7278– 7284. [5] Parawira W., & Mshandete A.M., [2009]. Biogas technology research in selected sub- Saharan African countries - A review. Afr. J. Biotechnology. 8, 116-125. [6] Ezekoye V.A., & Okeke C.E., [2006]. Design, construction and performance evaluation of plastic bio-digester and the storage of biogas. The Pacific J. Sci. Technology. 7, 176-184. [7] Mackie R.I., & Bryant M.P., [1995]. Anaerobic digestion of cattle waste at mesophilic and thermophilic temperatures. Applied Microbial Biotechnology. 43: 346- 350. [8] Angelidaki I., & Ellegaard L., [2003]. Codigestion of manure and organic wastes in centralized biogas plants – status and future trends. Applied Biochemistry and Biotechnology 109, 95–105. [9] Alatriste-Mondragon F., Samar P., Cox H.H.J., Ahring B.K., & Iranpour R., [2006]. Anaerobic codigestion of municipal, farm, and industrial organic wastes: a survey of recent literature. Water Environment Research 78, 607–636. [10] Callaghan F.J., Wase D.A.J., Thayanithy K., & Forster C.F., [1999]. Co-digestion of waste organic solids: batch studies. Bioresource Technology 67, 117–122. |
1-6 |
2. |
Authors: Fernando Millán, José G. Prato, David Zerpa, Erika - Andrea Levei Abstract— The paper presents the adsorption of copper ions on calcined substrates with variable charge surfaces prepared with refractory lithological materials coming from localities near Mérida city, Mérida State, Venezuela, (Lagunillas and Los Guáimaros). The studies were performed on activated and non activated calcined substrates, prepared from three granulometric fractions: gross fraction (1200 m – 425 m), medium fraction (425 m – 250 m) and fine fraction (< 250 m). The obtained isotherms were L type, showing strong affinity of Cu+2 ions for substrates surfaces, especially in case of activated substrate. This type of isotherm suggest specific adsorption with the formation of a directional covalent bonding between Cu+2 ion and the substrate surface formed by iron, aluminum, manganese and titanium amphoteric oxides. The linear fit using the Freundlich and Langmuir models show good linear correlations; however, differences between calculated and experimental values are higher when Freundlich model is applied. Adjustment to Langmuir model show better linear correlations and smaller differences and variability between calculated and experimental data so Langmuir model is more appropriated for experimental data interpretation Keywords— Adsorption, calcined substrates, cupper ion, lithological materials, three granulometric fractions. References- [1] Xu, Ren-Kou, Qafoku, N. P., Van Ranst, E., Li, J. Y. and Jiang, J. 2016. Adsorption Properties of Subtropical and Tropical Variable Soils: Implication from Climate Change and Biochard Amendment. In: Donald Sparks, editors: Advances in Agronomy, vol 135. Academic Press. [2] Millán, F.; Zerpa, D., Prato, J. G., Senila, M., Levei, E – A., Tanaselia, C. and Lomónaco, S. 2015. Caracterización Química de Tres Fracciones Granulométricas de Materiales Litológicos Oxídicos. Publicación ―in extensu‖ XXI Congreso de la Sociedad Venezolana de la Ciencia del Suelo, Instituto Nacional de Investigaciones Agronómicas. UNET. Venezuela. [3] McBride, M. B. 1994. Environmental Chemistry of Soils, Ed. Oxford University. [4] Millán, F.; Prato, J. G., López, Ma. A. and López, L. 2009. Estudio de la retención de iones calcio por materiales térmicamente modificados provenientes de suelos de la región de San Juan de Lagunillas, estado Mérida, Venezuela. Rev. Téc. Ing. Univ. Zulia.; 32, (1) (2009) 48 – 54. [5] Millán, F., Prato, J. G., García, M., Díaz, I. and Sánchez Molina, J. 2013. Adsorción de iones Cu+2 y Zn+2 por materiales litológicos de carga variable, provenientes de suelos del estado Mérida, Venezuela. Rev. Téc. Ing. Univ. Zulia. 36, (3) (2013) 195 – 201. [6] Prato, J. G., Millán, F., Pariata, A. and Fuentes, M. 2011. Caracterización de Materiales Litológicos Térmicamente Modificados para la Adsorción de Iones SO4 -2 en Aguas. X Congreso de la Sociedad Venezolana de Química. Universidad Simón Bolívar, Venezuela. [7] Prato, J. G., Ortiz, L., Gómez, R., Millán, Palomares, A. E., Díaz, I. and Sánchez Molina, J. 2013. Evaluación de la Adsorción de Fosfatos de Aguas Naturales a partir de Lechos Preparados con Suelo Proveniente de Lomas Bajas, Municipio Independencia, Estado Táchira. XX Congreso Venezolano de la Ciencia del Suelo. Universidad Experimental de Los Llanos Centrales ―Rómulo Gallegos‖, Venezuela. [8] Chifu, E. 1969. Chimie Coloidala. Editura Didactica si Pedagógica. Bucuresti. [9] Tan, K. H. 1993. Principles of Soil Chemistry. 2nd ed. Marcel Dekker, Inc. [10] Tan, K. H. 1996. Soil Sampling, Preparation and Analysis. Marcel Dekker, Inc. [11] González Martínez, S. P. 1972. Caracterización de la Fracción Arcilla en algunos Suelos Derivados de Cenizas Volcánicas de Costa Rica. Tesis de Grado de Magister Scientiae. Instituto Interamericano de Ciencias Agrícolas de La OEA, Depto. de Cultivos y Suelos Tropicales. [12] Fagundo, J. R., Valdés, J. J. and Pajón, J. M. 1984. Determinación del contenido de los minerales cuarzo y caolinita en sedimentos mediante espectroscopia infrarroja. Revista de Ciencias Químicas, 15 (2) (1984) 327 – 333. [13] Qafoku, N. P., van Ranst, E., Noble, A. and Baes, G. 2004. Variable charge soils: their mineralogy, chemistry and management. Advances in Agronomy 84 (2004) 170 – 172. [14] Jiang, J., Xu, R. K. and Li, S-Z. 2010. Effect of ionic strength and mechanism of Cu (II) adsorption by goethite and – Al2O3. J. Chem. Eng. Data, 55 (2010) 5547 – 5552. [15] Millán, F., Prato, J. G. and García, M. 2011. Caracterización de Materiales Litológicos Oxídicos de Carga Variable para Estudios de Adsorción Iónica. XIX Congreso de la Sociedad Venezolana de la Ciencia del Suelo, Instituto Nacional de Investigaciones Agronómicas. [16] Yang, J. K., Lee, S. M. and Davis, A. P. 2006. Effect of background electrolytes and pH on the adsorption of Cu (II) /EDTA onto TiO2. J. Colloid Interace Sci. 295 (2006) 14 - 20. |
7-17 |