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Abstract— In modern computing systems, the demand 

for high-speed and energy-efficient arithmetic operations 

has significantly increased, particularly for applications in 

signal processing, machine learning, and cryptography. 

Multipliers are essential components in these systems, but 

they often dominate power consumption and latency. The 

Radix-16 Booth multiplier is a promising approach to 

enhance speed and reduce latency in such applications. 

However, precise implementations can be computationally 

expensive. Approximate computing offers a trade-off 

between accuracy and efficiency by relaxing 

computational exactness, which is acceptable in error-

tolerant domains. This paper proposes a novel VLSI 

implementation of an approximate Radix-16 Booth 

multiplier optimized for high-speed and low-latency 

performance. The design employs an efficient encoding 

scheme, error-tolerant partial product generation, and an 

optimized reduction tree to achieve significant 

improvements in computation time and area. Simulation 

results demonstrate that the proposed multiplier achieves 

superior performance metrics compared to conventional 

exact multipliers, making it suitable for energy-efficient, 

high-speed VLSI systems. 

Keywords— VLSI, Approximate, Radix-16 Booth 

Multiplier, High Speed, Low Latency. 

I.  INTRODUCTION  

 

The exponential growth of data-driven applications, such 

as artificial intelligence, real-time signal processing, and high-

performance computing, necessitates the development of fast 

and efficient arithmetic circuits. Multiplication is one of the 

most fundamental and computationally intensive operations in 

digital systems, often serving as a bottleneck in system 

performance. To address this challenge, advanced multiplier 

designs that can operate with minimal latency and reduced 

energy consumption have garnered significant attention. 

Among these, the Radix-16 Booth multiplier stands out due to 

its ability to reduce the number of partial products generated 

during multiplication, leading to faster computations and 

lower area requirements. 

Radix-16 Booth encoding extends the principles of the 

classic Booth algorithm by encoding groups of four bits at a 

time, effectively reducing the number of required partial 

products by a factor of four. This reduction inherently 

improves the speed and efficiency of the multiplication 

process. However, traditional Radix-16 Booth multipliers, 

while precise, often require complex circuitry for encoding, 

decoding, and partial product generation, which can increase 

design complexity, area, and power consumption. These 

drawbacks become particularly critical in energy-constrained 

applications, such as portable devices, Internet of Things (IoT) 

nodes, and embedded systems. 

Approximate computing has emerged as a viable solution 

to address these challenges by trading off some degree of 

computational accuracy for significant gains in performance 

metrics such as speed, area, and energy efficiency. 

Approximate multipliers are particularly well-suited for error-

tolerant applications, where minor inaccuracies in computation 

do not significantly impact overall system performance. 

Examples include image processing, video encoding, machine 

learning inference, and bioinformatics, where perceptual 

quality or statistical accuracy often outweigh exact numerical 

precision. 
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In this work, we present a VLSI implementation of an 

approximate Radix-16 Booth multiplier designed for high-

speed and low-latency operations. The proposed design 

leverages several key optimizations, including an error-

tolerant Booth encoding mechanism, simplified partial product 

generation, and an efficient reduction tree architecture. These 

optimizations collectively minimize critical path delays and 

reduce hardware complexity, enabling the multiplier to 

achieve higher speeds while maintaining acceptable levels of 

accuracy. 

This paper is structured as follows: Section 2 details the 

proposed multiplier architecture, partial product generation, 

and reduction tree design. Section 3 presents the simulation 

results and compares the performance metrics of the proposed 

design against other multipliers. Section 4 discusses the 

implications of the results and potential applications. 

II. METHODOLOGY 

 

Figure 1: Flow Chart 

 

The methodology for implementing a high-speed and low-

latency binary addition process using the ripple-carry adder 

architecture involves the systematic design and integration of 

half adders and full adders. This architecture is chosen for its 

simplicity and modular design, which allows for the sequential 

addition of binary numbers with carry propagation. The 

process begins with understanding the binary addition rules, 

which govern the operations of addition at the bit level. 

Specifically, the least significant bit (LSB) is processed first 

using a half adder, as it does not require an incoming carry. 

Subsequent bits are handled by full adders, which take into 

account both the bit-level inputs and the carry generated from 

the previous stage. This step-by-step approach ensures the 

accuracy of the addition process across all bit positions. 

The half adder forms the foundation of the ripple-carry adder 

by processing the LSB of the binary inputs. It generates two 

outputs: the sum, which is the XOR of the inputs, and the 

carry, which is the AND of the inputs. This simple circuit is 

implemented using basic logic gates, ensuring minimal delay 

and resource usage at this stage. The carry output from the 

half adder serves as the input for the subsequent stage, feeding 

into the full adder that handles the next bit position. The 

modularity of the half adder design facilitates easy integration 

into the larger adder architecture, providing a seamless 

transition from the LSB processing to the higher-order bits. 

The full adder is the primary building block for processing the 

remaining bits in the binary inputs. It operates on three inputs: 

one bit from each of the two binary numbers and the carry 

input from the previous stage. The full adder produces a sum 

and a carry output, with the sum being the XOR of the three 

inputs and the carry being a combination of AND and OR 

operations that account for carry generation. This design 

ensures that the full adder can handle any bit-level 

combination effectively. The carry output from each full adder 

propagates to the next stage, creating the ripple effect that 

gives this architecture its name. While this propagation 

introduces some delay, the simplicity and reliability of the 

design make it a popular choice for many digital systems. 
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The entire adder is then implemented in a hierarchical manner, 

connecting the half adder and full adders in a sequential chain 

to form the ripple-carry adder. The architecture is designed 

using a hardware description language (HDL) such as Verilog 

or VHDL to facilitate simulation and verification. During 

simulation, the design is tested for functional accuracy and 

performance metrics, such as delay, power consumption, and 

area. Optimizations are performed to minimize gate delays and 

improve the critical path, ensuring that the adder meets the 

required performance benchmarks. This iterative process of 

design, simulation, and optimization is critical in developing a 

high-speed, low-latency solution. 

Finally, the optimized design is synthesized for physical 

implementation using CMOS technology. The layout is 

created, and the design undergoes rigorous testing to ensure it 

meets the desired specifications in real-world conditions. Key 

performance metrics, such as speed, power efficiency, and 

area utilization, are analyzed to validate the design's 

effectiveness. The ripple-carry adder's simplicity and 

reliability make it suitable for a wide range of applications, 

including processors, digital signal processing, and embedded 

systems, where efficient arithmetic operations are essential. 

By following this structured methodology, a robust binary 

addition system is achieved, balancing simplicity with 

performance for high-speed and low-latency applications. 

Inputs (Input 1 and Input 2): 

These are the binary numbers to be added. 

Each input can represent multiple bits (e.g., 4-bit or 8-bit 

numbers). 

Half Adder: 

A half adder is used to add the least significant bits (LSBs) of 

the inputs. 

It generates: 

Sum: The least significant bit of the result. 

Carry: A carry-out if there is an overflow from the addition. 

Full Adders: 

Full adders are used for the subsequent bits after the LSB. 

Each full adder takes three inputs: 

A bit from Input 1. 

A bit from Input 2. 

The carry from the previous stage. 

It generates: 

Sum: The bit of the result at the current position. 

Carry: A carry-out passed to the next stage. 

Carry Propagation: 

The carry generated by the half adder or a full adder is 

forwarded to the next stage to be included in the addition. 

Output: 

The final result of the binary addition is formed by combining 

all the Sum outputs from the adders. 

The carry-out from the last full adder becomes the most 

significant bit (MSB) of the result if present. 

 

Flow Explanation: 

 

Step 1 (Half Adder): 

The least significant bits (LSBs) of Input 1 and Input 2 are 

added using the half adder. 

The output includes a Sum (for the result) and a Carry (for 

the next stage). 

Step 2 (Full Adder Stages): 

For each subsequent bit position: 

A full adder adds three inputs: the corresponding bits from 

Input 1 and Input 2, and the carry from the previous adder. 

The outputs are a Sum for that position and a Carry for the 

next stage. 

Step 3 (Final Output): 

The combined outputs of all the Sum values form the resulting 

binary addition. 

If the final Carry is non-zero, it becomes the MSB of the 

output. 

III. SIMULATION RESULTS 

 

 
 

Figure 2: Top level View 
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Figure 2 illustrates, from a high-level viewpoint, the 64-bit 

approximate booth multiplier that is being considered. Both 

the 'a' input and the 'b' input have a value of 64 bits. The 'c' 

input likewise has a value of 64 bits. This multiplier will have 

an output called 'c' that consists of 128 individual bits. The bit 

that is produced by a digital multiplier is identical to the sum 

of the bits that were input to the multiplier. 

 

 
 

Figure 3: Result validation in Test Bench-4 

 

Here, 'a' and 'b' stand for the 64-bit hexadecimal inputs, while 

'c' represents the 128-bit hexadecimal output. The value of the 

letter 'a' is 1fd5, while the value of the letter 'b' is d67e. The 

result of 'c' is the product of 'a' and 'b' multiplied together. 

According to this, the value of 'c' is 1AABB8D6.  

 

Table 1: Result Comparison  

 

Sr No. Parameters Previous 

work [1] 

Proposed 

work 

1 Area 320 287 

2 Delay 4.92 ns 3.105 ns 

3 Power 9.13 mW 8.2mW 

4 PDP 

(Power 

delay 

product) 

44.91 25.46 

 

 

 
Figure 4: Comparison graph- Area 

 

 
Figure 5: Comparison graph- Delay 

 

Therefore, the proposed 64-bit booth multiplier provides the 

better results in terms of the parameters that were computed. 

In order for it to be useful in high-speed, low-area, and low-

latency applications.  

IV. CONCLUSION 

The proposed VLSI implementation of the Approximate 

Radix-16 Booth Multiplier demonstrates significant 

improvements in area, delay, power consumption, and Power 

Delay Product (PDP) compared to previous work. The 

proposed design achieves a 10.31% reduction in area, a 36.9% 

reduction in delay, and a 10.18% reduction in power 

consumption. Most notably, the PDP is reduced by 43.3%, 

highlighting the efficiency of the design in balancing power 
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and speed. These results validate the effectiveness of the 

optimized multiplier architecture in achieving high speed and 

low latency while maintaining low power consumption, 

making it ideal for modern VLSI applications in performance-

critical domains. 
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