

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 14, Issue 1, January 2025)

6

VLSI Implementation of Approximate Radix-16

Booth Multiplier for High Speed and Low Latency

1Mohd Shariq Zia , 2Manish Gupta, 3Dr Anshuj Jain
1Research Scholar, Dept. of Electronics and Communication Engineering, SCOPE College of Engineering, Bhopal, India

 2Assistant Professor, Dept. of Electronics and Communication Engineering, SCOPE College of Engineering, Bhopal, India
3Associate Professor & HOD, Dept. of Electronics and Communication Engineering, SCOPE College of Engineering, Bhopal,

India

Abstract— In modern computing systems, the demand

for high-speed and energy-efficient arithmetic operations

has significantly increased, particularly for applications in

signal processing, machine learning, and cryptography.

Multipliers are essential components in these systems, but

they often dominate power consumption and latency. The

Radix-16 Booth multiplier is a promising approach to

enhance speed and reduce latency in such applications.

However, precise implementations can be computationally

expensive. Approximate computing offers a trade-off

between accuracy and efficiency by relaxing

computational exactness, which is acceptable in error-

tolerant domains. This paper proposes a novel VLSI

implementation of an approximate Radix-16 Booth

multiplier optimized for high-speed and low-latency

performance. The design employs an efficient encoding

scheme, error-tolerant partial product generation, and an

optimized reduction tree to achieve significant

improvements in computation time and area. Simulation

results demonstrate that the proposed multiplier achieves

superior performance metrics compared to conventional

exact multipliers, making it suitable for energy-efficient,

high-speed VLSI systems.

Keywords— VLSI, Approximate, Radix-16 Booth

Multiplier, High Speed, Low Latency.

I. INTRODUCTION

The exponential growth of data-driven applications, such

as artificial intelligence, real-time signal processing, and high-

performance computing, necessitates the development of fast

and efficient arithmetic circuits. Multiplication is one of the

most fundamental and computationally intensive operations in

digital systems, often serving as a bottleneck in system

performance. To address this challenge, advanced multiplier

designs that can operate with minimal latency and reduced

energy consumption have garnered significant attention.

Among these, the Radix-16 Booth multiplier stands out due to

its ability to reduce the number of partial products generated

during multiplication, leading to faster computations and

lower area requirements.

Radix-16 Booth encoding extends the principles of the

classic Booth algorithm by encoding groups of four bits at a

time, effectively reducing the number of required partial

products by a factor of four. This reduction inherently

improves the speed and efficiency of the multiplication

process. However, traditional Radix-16 Booth multipliers,

while precise, often require complex circuitry for encoding,

decoding, and partial product generation, which can increase

design complexity, area, and power consumption. These

drawbacks become particularly critical in energy-constrained

applications, such as portable devices, Internet of Things (IoT)

nodes, and embedded systems.

Approximate computing has emerged as a viable solution

to address these challenges by trading off some degree of

computational accuracy for significant gains in performance

metrics such as speed, area, and energy efficiency.

Approximate multipliers are particularly well-suited for error-

tolerant applications, where minor inaccuracies in computation

do not significantly impact overall system performance.

Examples include image processing, video encoding, machine

learning inference, and bioinformatics, where perceptual

quality or statistical accuracy often outweigh exact numerical

precision.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 14, Issue 1, January 2025)

7

In this work, we present a VLSI implementation of an

approximate Radix-16 Booth multiplier designed for high-

speed and low-latency operations. The proposed design

leverages several key optimizations, including an error-

tolerant Booth encoding mechanism, simplified partial product

generation, and an efficient reduction tree architecture. These

optimizations collectively minimize critical path delays and

reduce hardware complexity, enabling the multiplier to

achieve higher speeds while maintaining acceptable levels of

accuracy.

This paper is structured as follows: Section 2 details the

proposed multiplier architecture, partial product generation,

and reduction tree design. Section 3 presents the simulation

results and compares the performance metrics of the proposed

design against other multipliers. Section 4 discusses the

implications of the results and potential applications.

II. METHODOLOGY

Figure 1: Flow Chart

The methodology for implementing a high-speed and low-

latency binary addition process using the ripple-carry adder

architecture involves the systematic design and integration of

half adders and full adders. This architecture is chosen for its

simplicity and modular design, which allows for the sequential

addition of binary numbers with carry propagation. The

process begins with understanding the binary addition rules,

which govern the operations of addition at the bit level.

Specifically, the least significant bit (LSB) is processed first

using a half adder, as it does not require an incoming carry.

Subsequent bits are handled by full adders, which take into

account both the bit-level inputs and the carry generated from

the previous stage. This step-by-step approach ensures the

accuracy of the addition process across all bit positions.

The half adder forms the foundation of the ripple-carry adder

by processing the LSB of the binary inputs. It generates two

outputs: the sum, which is the XOR of the inputs, and the

carry, which is the AND of the inputs. This simple circuit is

implemented using basic logic gates, ensuring minimal delay

and resource usage at this stage. The carry output from the

half adder serves as the input for the subsequent stage, feeding

into the full adder that handles the next bit position. The

modularity of the half adder design facilitates easy integration

into the larger adder architecture, providing a seamless

transition from the LSB processing to the higher-order bits.

The full adder is the primary building block for processing the

remaining bits in the binary inputs. It operates on three inputs:

one bit from each of the two binary numbers and the carry

input from the previous stage. The full adder produces a sum

and a carry output, with the sum being the XOR of the three

inputs and the carry being a combination of AND and OR

operations that account for carry generation. This design

ensures that the full adder can handle any bit-level

combination effectively. The carry output from each full adder

propagates to the next stage, creating the ripple effect that

gives this architecture its name. While this propagation

introduces some delay, the simplicity and reliability of the

design make it a popular choice for many digital systems.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 14, Issue 1, January 2025)

8

The entire adder is then implemented in a hierarchical manner,

connecting the half adder and full adders in a sequential chain

to form the ripple-carry adder. The architecture is designed

using a hardware description language (HDL) such as Verilog

or VHDL to facilitate simulation and verification. During

simulation, the design is tested for functional accuracy and

performance metrics, such as delay, power consumption, and

area. Optimizations are performed to minimize gate delays and

improve the critical path, ensuring that the adder meets the

required performance benchmarks. This iterative process of

design, simulation, and optimization is critical in developing a

high-speed, low-latency solution.

Finally, the optimized design is synthesized for physical

implementation using CMOS technology. The layout is

created, and the design undergoes rigorous testing to ensure it

meets the desired specifications in real-world conditions. Key

performance metrics, such as speed, power efficiency, and

area utilization, are analyzed to validate the design's

effectiveness. The ripple-carry adder's simplicity and

reliability make it suitable for a wide range of applications,

including processors, digital signal processing, and embedded

systems, where efficient arithmetic operations are essential.

By following this structured methodology, a robust binary

addition system is achieved, balancing simplicity with

performance for high-speed and low-latency applications.

Inputs (Input 1 and Input 2):

These are the binary numbers to be added.

Each input can represent multiple bits (e.g., 4-bit or 8-bit

numbers).

Half Adder:

A half adder is used to add the least significant bits (LSBs) of

the inputs.

It generates:

Sum: The least significant bit of the result.

Carry: A carry-out if there is an overflow from the addition.

Full Adders:

Full adders are used for the subsequent bits after the LSB.

Each full adder takes three inputs:

A bit from Input 1.

A bit from Input 2.

The carry from the previous stage.

It generates:

Sum: The bit of the result at the current position.

Carry: A carry-out passed to the next stage.

Carry Propagation:

The carry generated by the half adder or a full adder is

forwarded to the next stage to be included in the addition.

Output:

The final result of the binary addition is formed by combining

all the Sum outputs from the adders.

The carry-out from the last full adder becomes the most

significant bit (MSB) of the result if present.

Flow Explanation:

Step 1 (Half Adder):

The least significant bits (LSBs) of Input 1 and Input 2 are

added using the half adder.

The output includes a Sum (for the result) and a Carry (for

the next stage).

Step 2 (Full Adder Stages):

For each subsequent bit position:

A full adder adds three inputs: the corresponding bits from

Input 1 and Input 2, and the carry from the previous adder.

The outputs are a Sum for that position and a Carry for the

next stage.

Step 3 (Final Output):

The combined outputs of all the Sum values form the resulting

binary addition.

If the final Carry is non-zero, it becomes the MSB of the

output.

III. SIMULATION RESULTS

Figure 2: Top level View

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 14, Issue 1, January 2025)

9

Figure 2 illustrates, from a high-level viewpoint, the 64-bit

approximate booth multiplier that is being considered. Both

the 'a' input and the 'b' input have a value of 64 bits. The 'c'

input likewise has a value of 64 bits. This multiplier will have

an output called 'c' that consists of 128 individual bits. The bit

that is produced by a digital multiplier is identical to the sum

of the bits that were input to the multiplier.

Figure 3: Result validation in Test Bench-4

Here, 'a' and 'b' stand for the 64-bit hexadecimal inputs, while

'c' represents the 128-bit hexadecimal output. The value of the

letter 'a' is 1fd5, while the value of the letter 'b' is d67e. The

result of 'c' is the product of 'a' and 'b' multiplied together.

According to this, the value of 'c' is 1AABB8D6.

Table 1: Result Comparison

Sr No. Parameters Previous

work [1]

Proposed

work

1 Area 320 287

2 Delay 4.92 ns 3.105 ns

3 Power 9.13 mW 8.2mW

4 PDP

(Power

delay

product)

44.91 25.46

Figure 4: Comparison graph- Area

Figure 5: Comparison graph- Delay

Therefore, the proposed 64-bit booth multiplier provides the

better results in terms of the parameters that were computed.

In order for it to be useful in high-speed, low-area, and low-

latency applications.

IV. CONCLUSION

The proposed VLSI implementation of the Approximate

Radix-16 Booth Multiplier demonstrates significant

improvements in area, delay, power consumption, and Power

Delay Product (PDP) compared to previous work. The

proposed design achieves a 10.31% reduction in area, a 36.9%

reduction in delay, and a 10.18% reduction in power

consumption. Most notably, the PDP is reduced by 43.3%,

highlighting the efficiency of the design in balancing power

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 14, Issue 1, January 2025)

10

and speed. These results validate the effectiveness of the

optimized multiplier architecture in achieving high speed and

low latency while maintaining low power consumption,

making it ideal for modern VLSI applications in performance-

critical domains.

REFERENCES

1. M. H. Haider and S. B. Ko, "Booth encoding based

energy efficient multipliers for deep learning

systems," in IEEE Transactions on Circuits and

Systems II: Express Briefs, doi:

10.1109/TCSII.2022.3233923.

2. H. Zhang and S. -B. Ko, "Efficient Approximate

Posit Multipliers for Deep Learning Computation," in

IEEE Journal on Emerging and Selected Topics in

Circuits and Systems, vol. 13, no. 1, pp. 201-211,

March 2023, doi: 10.1109/JETCAS.2022.3231642.

3. B. K. Mohanty, "Efficient Approximate Multiplier

Design Based on Hybrid Higher Radix Booth

Encoding," in IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, vol. 13, no.

1, pp. 165-174, March 2023, doi:

10.1109/JETCAS.2022.3229831.

4. G. Park, J. Kung and Y. Lee, "Simplified Compressor

and Encoder Designs for Low-Cost Approximate

Radix-4 Booth Multiplier," in IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 70, no.

3, pp. 1154-1158, March 2023, doi:

10.1109/TCSII.2022.3217696.

5. Q. Cheng et al., "A Low-Power Sparse Convolutional

Neural Network Accelerator with Pre-Encoding

Radix-4 Booth Multiplier," in IEEE Transactions on

Circuits and Systems II: Express Briefs, doi:

10.1109/TCSII.2022.3231361.

6. K. Chen, C. Xu, H. Waris, W. Liu, P. Montuschi and

F. Lombardi, "Exact and Approximate Squarers for

Error-Tolerant Applications," in IEEE Transactions

on Computers, doi: 10.1109/TC.2022.3228592.

7. F. Zhu, S. Zhen, X. Yi, H. Pei, B. Hou and Y. He,

"Design of Approximate Radix-256 Booth Encoding

for Error-Tolerant Computing," in IEEE Transactions

on Circuits and Systems II: Express Briefs, vol. 69,

no. 4, pp. 2286-2290, April 2022, doi:

10.1109/TCSII.2022.3148122.

8. T. Zhang et al., "Design of Majority Logic-Based

Approximate Booth Multipliers for Error-Tolerant

Applications," in IEEE Transactions on

Nanotechnology, vol. 21, pp. 81-89, 2022, doi:

10.1109/TNANO.2022.3145362.

9. A. S. Roy, H. Agrawal and A. S. Dhar, "ACBAM-

Accuracy-Configurable Sign Inclusive Broken Array

Booth Multiplier Design," in IEEE Transactions on

Emerging Topics in Computing, vol. 10, no. 4, pp.

2072-2078, 1 Oct.-Dec. 2022, doi:

10.1109/TETC.2021.3107509.

10. Z. Aizaz and K. Khare, "Area and Power Efficient

Truncated Booth Multipliers Using Approximate

Carry-Based Error Compensation," in IEEE

Transactions on Circuits and Systems II: Express

Briefs, vol. 69, no. 2, pp. 579-583, Feb. 2022, doi:

10.1109/TCSII.2021.3094910.

