

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online))Volume 4, Issue 6, June 2015)

59

Deep Fake Face Detection using Deep Learning based

DenseNet 121 Architecture

Yashkeerti Baderiya1, Prof. Adarsh Raushan2, Dr. Sadhna K Mishra3
1M. Tech. Scholar, Department of Computer Science and Engineering, LNCT, Bhopal

2Assistant Professor, Department of Computer Science and Engineering, LNCT, Bhopal
3Head of Dept., Department of Computer Science and Engineering, LNCT, Bhopal

Abstract: Deepfake is an advanced synthetic media

technology that can generate deceptively authentic yet

forged images and videos by modifying a person’s

likeliness. The term ”Deepfake” is a portmanteau of

”Deep learning” and ”Fake,” which reflects the

utilization of artificial intelligence and deep learning

algorithms in creating deepfake. The deepfake

generation involved training to learn the nuances of

facial attributes, facial expressions, motion

movement, and speech patterns to produce fabricated

media that are indistinguishable from the actual

footage. Recently, deep learning has significantly

improved the accuracy of image classification and

object detection systems. In this study, we used

convolutional neural network (CNN)-based pre-

trained models to effectively identify plant diseases.

We fine-tuned the hyperparameters of popular pre-

trained models, including DenseNet-121. The

deepfake dataset consists of all 70k REAL faces from

the Flickr dataset collected by Nvidia, as well as 70k

fake faces sampled from the 1 Million FAKE faces

(generated by StyleGAN) that was provided by Bojan.

Keywords: Deep learning advancements, image

classification accuracy, object detection

improvements, convolutional neural networks (CNN),

DenseNet121

I. INTRODUCTION

Visual aids are commonly utilized across various

industries such as law, medicine, and entertainment

[1, 2]. However, the extensive usage of visual

media also presents a risk of misuse. Media forgery

has been prevalent in digital culture for a while,

where software tools like Photoshop are used for

manual manipulation of media content. With the

recent advancements in Computer Vision (CV) and

Machine Learning (ML) technologies, media

forgery has become more accessible and

widespread.

In 2012, the field of CV experienced a significant

breakthrough when AlexNet, an AI model

developed by Alex, outperformed other models in

the image recognition challenge by a large margin.

Since then, AlexNet, which is classic convolutional

neural network architecture, has been instrumental

in many CV applications. Another leap forward in

CV research was made in 2014 when Goodfellow

introduced the Generative Adversarial Network

(GAN). GAN enables the creation of realistic-

looking images from scratch without human

intervention or manual editing.

The rapid evolution of hardware that supports

artificial neural network models’ training has

catalyzed the growth of deep learning. In 2017, a

novel deep learning-based media forgery algorithm

called ’Deepfake’ emerged and wreaked havoc,

threatening society’s security and privacy.

Deepfake is a synthetic technique that replaces the

person in an existing image or video with someone

else’s likeness or characteristics. It is a

portmanteau of ’deep learning’ and ’fake’. It

originated from an anonymous individual under the

pseudonym ’deepfake’ who uploaded numerous

pornographic videos to the Reddit website. The

actresses’ faces in the videos were swapped with

those of other celebrities using deep learning [3, 4].

Figure 1 outlines the examples of deepfake based

on different generation methods. Based on the

figure,

• Puppet Master refers to the transfer of motion

movement by synthesizing the motion of the

source and regenerating onto the target output

[5];

• Face Swapping involves swapping the facial

regions between two people from one to

another [6];

• Involve facial reenactment where Neural

Textures focuses on deferred neural rendering

to integrate neural textures in the parametric

vectors for facial synthesis [7] while Face2Face

uses GAN, such as CycleGAN and Star- GAN

to achieve the synthesis output [8];

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online))Volume 4, Issue 6, June 2015)

60

• Present entire face synthesis to produce non-exist

human outputs by the training on the different source

data to capture their significant facial characteristics

[9, 10];

• Leverages GAN’s capability to modify certain facial

attributes on target.

Figure 1: Examples of Deepfake

II. CONVOLUTIONAL NEURAL NETWORK

CNN models excel at object recognition and

classification when working with image databases.

However, they come with challenges, including lengthy

training times and the need for large datasets. Deep CNN

models are necessary to extract both low-level and

complex features from images, which further complicates

the training process. Transfer learning offers a solution to

these issues by utilizing pre-trained networks, allowing

the parameters learned on one dataset to be applied to

different problems. In this section, we explore the

methodologies employed in this work.

Plant disease datasets consist of numerous images of both

infected and healthy plant samples, with each sample

assigned to a specific class. For example, if we consider

banana plants as a class, all images of healthy and

diseased banana plants are mapped to that class.

Classification of a target image relies on the features

extracted from the source images. In the case of banana

plants, the class includes four types of diseases:

xanthomonas wilt, fusarium wilt, bunchy top virus, and

black sigatoka. When a sample of one particular disease

is used as input, and the model has been trained with all

four disease samples under the banana class, the output

during the testing phase will accurately classify the

specific disease label among the four categories within

that class.

In multi-class classification, each category is mutually

exclusive, meaning that each sample is assigned to only

one category within the class. In contrast, multi-label

classification treats each category within a class as a

separate class. If there are N classes, we refer to N multi-

classes. If each of these N classes contains M categories,

then each category within each of the N classes is

considered its own class.

Fig. 2: CNN Architecture

2.1 DenseNet121

Densely Connected Convolutional Network, is a type of

convolutional neural network (CNN) that introduces

dense connections between layers. Each layer receives

input from all preceding layers, which encourages feature

reuse and mitigates the vanishing gradient problem.

DenseNet121, in particular, has 121 layers and is

composed of several building blocks, including dense

blocks, transition layers, and convolutional layers.

DenseNet121's architecture encourages feature reuse,

which reduces the number of parameters and mitigates

the vanishing gradient problem, leading to improved

training efficiency and accuracy. Dense connections

allow the model to learn more complex features and

improve gradient flow through the network, which is

particularly beneficial for deep architectures.

DenseNet121 is a powerful and efficient deep learning

model designed to tackle complex image recognition

tasks by leveraging dense connectivity patterns, ensuring

robust feature propagation and gradient flow throughout

the network.

Initial Convolution Layer

The network starts with a convolutional layer that

performs a 7 × 7 convolution with 64 filters, followed by

a 3 × 3 max pooling operation with a stride of 2.

Mathematically, this can be expressed as:

𝑋1 = 𝑅𝑒𝐿𝑈 (𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐶𝑜𝑛𝑣2𝐷(𝑋0, 64,7

× 7, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2)))

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online))Volume 4, Issue 6, June 2015)

61

Where 𝑋0 is the input image, 𝑋1 is the output of the first

convolutional layer and Conv2D denotes a 2D

convolution.

Dense blocks are the core components of DenseNet. Each

dense block consists of multiple layers where each layer

receives input from all previous layers within the block.

If a dense block has L layers, the 𝑙 −th layer receives

feature maps from all preceding layers {0, 1, … , 𝑙 − 1}.

Fig. 3; DenseNet 121 Architecture

For the 𝑙-th layer in a dense block:

𝑋𝑙 = 𝐻𝑙([𝑋0, 𝑋1, . . . , 𝑋𝑙−1])

Where 𝐻𝑙 is a composite function of batch normalization

(BN), ReLU, and Convolution (Conv). Specifically:

𝐻𝑙(𝑋) = 𝐶𝑜𝑛𝑣 (𝑅𝑒𝐿𝑈(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑋)))

Each layer produces 𝑘 feature maps, where 𝑘 is the

growth rate.

Between dense blocks, transition layers are used to

control the complexity of the model and reduce the size

of the feature maps. A transition layer consists of a 1x1

convolution followed by a 2x2 average pooling with a

stride of 2.

𝑋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

= 𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝐷(𝐶𝑜𝑛𝑣2𝐷(𝑋𝑖𝑛𝑝𝑢𝑡 , 𝑓𝑖𝑙𝑡𝑒𝑟𝑠

= 𝜃 ∙ 𝑓𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑛𝑝𝑢𝑡 , 1 × 1), 𝑠𝑡𝑟𝑖𝑑𝑒 = 2)

Where 𝜃 is the compression factor, typically set to 0.5,

reducing the number of feature maps by half.

III. PROPOSED METHODOLOGY

The proposed hybrid deep learning model that combines

DenseNet-121 and a custom Convolutional Neural

Network (CNN) is to accurately identify plant diseases

from the Plant Village dataset.

Step 1: The input to the model is an image tensor 𝑋 with

dimensions 256×256×3, as per the PlantVillage dataset.

Detail of dataset is given in Table 1.

𝑋 ∈ ℝ256×256×3

Step 2: DenseNet-121 Base Layers: Apply the DenseNet-

121 model (pre-trained on ImageNet) to the input image.

Exclude the top classification layers.

𝐹𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 = 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡121(𝑋, 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑡𝑜𝑝

= 𝐹𝑎𝑙𝑠𝑒)

Here, 𝐹𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 ∈ ℝ8×8×1024 (adjusted for the input size)

Step 3: Global Average Pooling

Apply global average pooling to the feature map to

reduce its dimensions.

𝑔 = 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷(𝐹𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡)

The resulting vector 𝑔 ∈ ℝ1024

Step 4: The same input image tensor 𝑋 is used as input

to the custom CNN 𝑋 ∈ ℝ256×256×3

Step 5: Apply a convolutional layer with 32 filters of size

3 × 3, followed by a ReLU activation function.

𝐶1 = 𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣2𝐷(32, (3,3))(𝑋))

This operation results in an output tensor 𝐶1 ∈
ℝ254×254×32

Step 6: Apply max pooling with a 2 × 2 window to

reduce the spatial dimension.

𝑃1 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷((2,2))(𝐶1)

The resulting tensor 𝑃1 ∈ ℝ127×127×32

Step 7: Apply a second convolutional layer with 64 filters

of size 3 × 3, followed by a ReLU activation function.

𝐶1 = 𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣2𝐷(64, (3,3))(𝑃1))

This operation results in an output tensor 𝐶2 ∈
ℝ125×125×64

Step 8: Apply another max pooling with a 2 × 2 window.

𝑃2 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷((2,2))(𝐶2)

The resulting tensor 𝑃2 ∈ ℝ62×62×64

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online))Volume 4, Issue 6, June 2015)

62

Step 9: Flatten the features maps to convert the 3D tensor

into a 1D vector

𝑓 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑃2)

𝑃2 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷((2,2))(𝐶2)

The resulting tensor 𝑃2 ∈ ℝ246016

Step 10: Apply a dense (fully connected) layer with 128

units a ReLU activation function.

𝑑 = 𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒(128)(𝑓))

The resulting vector 𝑑 ∈ ℝ128

Step 11: Concatenate the outputs of DenseNet 121 (g)

and the custom CNN (d).

𝑧 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 ([𝑔, 𝑑])

The resulting concatenated vector 𝑧 ∈ ℝ1152

Step 12: Apply a final dense layer for classification with

the number of units equal to the number of classes in the

PlantVillage dataset (num_classes=38), and a softmax

activation function to produce the output probabilities.

𝑦 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐷𝑒𝑛𝑠𝑒(38)(𝑧))

The results in a probability vector y∈ ℝ38

Step 13: Compile the model with an appropriate

optimizer (e.g., ‘adam’), loss function (e.g.,

‘categorical_crossentropy’), and metrics (e.g.,

‘accuracy’)

Step 14: Train the model using the training data

(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛) for a specified number of epochs and

batch size with a validation split.

Step 15: Evaluate the trained model on a separate test set

to measure its performance.

IV. RESULT ANALYSIS

Performance metrics are critical for assessing the

effectiveness of neural network learning models in image

classification tasks, providing quantitative measures of

their accuracy, reliability, and generalization capabilities.

Several key performance metrics, along with their

corresponding formulas, are commonly utilized in

evaluating these models:

Accuracy: Accuracy measures the proportion of

correctly classified images out of the total number of

images in the dataset. It is calculated as the ratio of the

sum of true positive (TP) and true negative predictions

(TN) to the total number of predictions. The formula for

accuracy is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100

Precision: Precision assesses the model's capacity to

accurately recognize positive cases among all instances

labeled as positive. It is determined by the ratio of true

positive predictions to the total of true positive and false

positive predictions. The formula for precision is:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall (Sensitivity): Recall quantifies the proportion of

true positive cases correctly identified by the model out

of all actual positive cases. It is calculated as the ratio of

true positive predictions to the total of true positive and

false negative predictions. The formula for recall is:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Specificity: Specificity evaluates the model's capability

to accurately identify negative cases out of all instances

classified as negative. It is determined by the ratio of true

negative predictions to the total of true negative and false

positive predictions. The formula for specificity is:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

F1-score: The F1-score represents the harmonic mean of

precision and recall, offering a balanced assessment of

the model's performance. It is calculated as follows:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Area under the Receiver Operating Characteristic

Curve (AUC-ROC): AUC-ROC provides a summary of

the model's overall performance across different

classification thresholds by plotting the true positive rate

(sensitivity) against the false positive rate (1-specificity).

The AUC-ROC score ranges from 0 to 1, with higher

values indicating better class discrimination.

Confusion Matrix Analysis: The confusion matrix

offers a comprehensive overview of the model's

predictions, indicating the counts of true positives (TP),

true negatives (TN), false positives (FP), and false

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online))Volume 4, Issue 6, June 2015)

63

negatives (FN). Using the confusion matrix, various

performance metrics, including accuracy, precision,

recall, and specificity, can be calculated.

Following are the Results of the Proposed DenseNet

model:

Figure 4: Training and Validation Accuracy

Figure 5: Training and Validation Loss

Qualitative Evaluation:

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online))Volume 4, Issue 6, June 2015)

64

Quantitative Results:

Figure 6: Confusion Matrix for Custom DenseNet121 model on test set

Figure 7: ROC Curve for True and False Predictions

Test performance:

313/313 [==============================] - 21

5s 689ms/step - loss: 0.0727 - accuracy: 0.9734

Test Loss: 0.0726810023188591

Test Accuracy: 0.9733999967575073

Figure 8: Classification Report on test Set

Table 1 displays the results of Ali Raza et al. [1] and

proposed method in terms of accuracy and precision. Ali

Raza et al. [1] give an accuracy of 89%, & a precision of

89% for CNN model, an accuracy of 90%, & a precision

of 88% for VGG19 model, an accuracy of 88%, & a

precision of 86% for MobileNet model, an accuracy of

94%, & a precision of 95% for DFP model. The proposed

DenseNet121 model provides an accuracy of 97.33% and

a precision of 98%. Clearly, the proposed DenseNet121

model is a 3.421% improvement accuracy and 3.061%

improvement precision compared to Ali Raza et al. [1].

Fig. 9 and figure 10 shows the graphical representation of

the comparison result.

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online))Volume 4, Issue 6, June 2015)

65

Table 1: Comparison Result

Model Technique Accuracy

Score

Precision

Score

Dee Learning CNN 89% 89%

Transfer

Learning

VGG16 90% 88%

Transfer
Learning

MobileNet 88% 86%

Dee Learning DFP 94% 95%

Dee Learning Proposed

DenseNet121

97.33% 98%

Figure 9: Graphical Accuracy

Figure 10: Graphical Precision

V. CONCLUSION

The hybrid model developed for the Plant Village dataset

demonstrates a robust approach to detecting diseases in

plant leaves, leveraging a combination of DenseNet121

and custom convolutional neural network (CNN) layers.

DenseNet121, a powerful feature extractor pretrained on

ImageNet, provides a strong foundation for capturing

intricate patterns and features from the leaf images. This

pretrained base is augmented by additional CNN layers

designed to further refine and process these features,

enhancing the model's ability to distinguish between

deepfake image accurately.

To enhance training efficiency, all but the last 50 layers

of DenseNet121 are frozen, ensuring that the pre-trained

knowledge is retained while allowing the final layers to

be fine-tuned. The output from DenseNet121 is passed

through a Global Average Pooling layer, reducing the

feature maps to a single vector.

82%
84%
86%
88%
90%
92%
94%
96%
98%

100%

Accuracy Score

Accuracy Score

80%
82%
84%
86%
88%
90%
92%
94%
96%
98%

100%

Precision Score

Precision Score

International Journal of Recent Development in Engineering and Technology

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online))Volume 4, Issue 6, June 2015)

66

REFERENCES

[1] Ali Raza, Kashif Munir and Mubarak Almutairi, “A Novel Deep

Learning Approach for Deepfake Image Detection”, Apply

Science, pp. 01-15, 2022.
[2] Zobaed, S.; Rabby, F.; Hossain, I.; Hossain, E.; Hasan, S.;

Karim, A.; Hasib, K.M. Deepfakes: Detecting forged and

synthetic media content using machine learning. In Artificial
Intelligence in Cyber Security: Impact and Implications;

Springer: Berlin/Heidelberg, Germany, 2021; pp. 177–201.
[3] Thambawita, V.; Isaksen, J.L.; Hicks, S.A.; Ghouse, J.; Ahlberg,

G.; Linneberg, A.; Grarup, N.; Ellervik, C.; Olesen, M.S.;

Hansen, T.; et al. DeepFake electrocardiograms using generative
adversarial networks are the beginning of the end for privacy

issues in medicine. Sci. Rep. 2021, 11, 21869.

[4] Ahmed, M.F.B.; Miah, M.S.U.; Bhowmik, A.; Sulaiman, J.B.
Awareness to Deepfake: A resistance mechanism to Deepfake. In

Proceedings of the 2021 International Congress of Advanced

Technology and Engineering (ICOTEN), Taiz, Yemen, 4–5 July
2021; pp. 1–5.

[5] Brian Dolhansky, Russ Howes, Ben Pflaum, Nicole Baram, and

Cristian Canton Ferrer. The Deepfake Detection Challenge
(DFDC) Preview Dataset. arXiv eprints, page arXiv:1910.08854,

2019.

[6] Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ
Howes, Menglin Wang, and Cristian Canton Ferrer. The

DeepFake Detection Challenge Dataset. arXiv e-prints, page

arXiv:2006.07397, 2020.
[7] Md Shohel Rana, Mohammad Nur Nobi, Beddhu Murali, and

Andrew H Sung. Deepfake detection: A systematic literature

review. IEEE access, 10:25494–25513, 2022.

[8] Jin, B.; Cruz, L.; Gonçalves, N. Deep facial diagnosis: Deep

transfer learning from face recognition to facial diagnosis. IEEE

Access 2020, 8, 123649–123661.
[9] Lewis, J.K.; Toubal, I.E.; Chen, H.; Sandesera, V.; Lomnitz, M.;

Hampel-Arias, Z.; Prasad, C.; Palaniappan, K. Deepfake Video

Detection Based on Spatial, Spectral, and Temporal
Inconsistencies Using Multimodal Deep Learning. In

Proceedings of the 2020 IEEE Applied Imagery Pattern

RecognitionWorkshop (AIPR),Washington DC, DC, USA, 13–
15 October 2020; pp. 1–9.

[10] Lee, H.; Park, S.H.; Yoo, J.H.; Jung, S.H.; Huh, J.H. Face

recognition at a distance for a stand-alone access control system.
Sensors 2020, 20, 785.

[11] Z. He, W. Zuo, M. Kan, S. Shan, and X. Chen. Attgan: Facial

attribute editing by only changing what you want. IEEE
Transactions on Image Processing, 28(11): 5464–5478, 2019.

[12] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz.

Mocogan: Decomposing motion and content for video
generation. pages 1526–1535, 2018.

[13] Guha Balakrishnan, Amy Zhao, Adrian V. Dalca, Fr´edo Durand,

and John Guttag. Synthesizing images of humans in unseen
poses. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018.

[14] Soumya Tripathy, Juho Kannala, and Esa Rahtu. Icface:
Interpretable and controllable face reenactment using gans. In

Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision (WACV), 2020.
[15] Wayne Wu, Yunxuan Zhang, Cheng Li, Chen Qian, and Chen

Change Loy. Reenactgan: Learning to reenact faces via boundary

transfer. In Proceedings of the European Conference on
Computer 2018.

