
 
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online))Volume 4, Issue 6, June 2015) 
  

59 
 

Deep Fake Face Detection using Deep Learning based 

DenseNet 121 Architecture 
 

Yashkeerti Baderiya1, Prof. Adarsh Raushan2, Dr. Sadhna  K Mishra3 
1M. Tech. Scholar, Department of Computer Science and Engineering, LNCT, Bhopal 

2Assistant Professor, Department of Computer Science and Engineering, LNCT, Bhopal 
3Head of Dept., Department of Computer Science and Engineering, LNCT, Bhopal 

 

Abstract:  Deepfake is an advanced synthetic media 

technology that can generate deceptively authentic yet 

forged images and videos by modifying a person’s 

likeliness. The term ”Deepfake” is a portmanteau of 

”Deep learning” and ”Fake,” which reflects the 

utilization of artificial intelligence and deep learning 

algorithms in creating deepfake. The deepfake 

generation involved training to learn the nuances of 

facial attributes, facial expressions, motion 

movement, and speech patterns to produce fabricated 

media that are indistinguishable from the actual 

footage. Recently, deep learning has significantly 

improved the accuracy of image classification and 

object detection systems. In this study, we used 

convolutional neural network (CNN)-based pre-

trained models to effectively identify plant diseases. 

We fine-tuned the hyperparameters of popular pre-

trained models, including DenseNet-121. The 

deepfake dataset consists of all 70k REAL faces from 

the Flickr dataset collected by Nvidia, as well as 70k 

fake faces sampled from the 1 Million FAKE faces 

(generated by StyleGAN) that was provided by Bojan. 
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I. INTRODUCTION 

Visual aids are commonly utilized across various 

industries such as law, medicine, and entertainment 

[1, 2]. However, the extensive usage of visual 

media also presents a risk of misuse. Media forgery 

has been prevalent in digital culture for a while, 

where software tools like Photoshop are used for 

manual manipulation of media content. With the 

recent advancements in Computer Vision (CV) and 

Machine Learning (ML) technologies, media 

forgery has become more accessible and 

widespread. 

In 2012, the field of CV experienced a significant 

breakthrough when AlexNet, an AI model 

developed by Alex, outperformed other models in 

the image recognition challenge by a large margin. 

Since then, AlexNet, which is classic convolutional 

neural network architecture, has been instrumental 

in many CV applications. Another leap forward in 

CV research was made in 2014 when Goodfellow 

introduced the Generative Adversarial Network 

(GAN). GAN enables the creation of realistic-

looking images from scratch without human 

intervention or manual editing. 

The rapid evolution of hardware that supports 

artificial neural network models’ training has 

catalyzed the growth of deep learning. In 2017, a 

novel deep learning-based media forgery algorithm 

called ’Deepfake’ emerged and wreaked havoc, 

threatening society’s security and privacy. 

Deepfake is a synthetic technique that replaces the 

person in an existing image or video with someone 

else’s likeness or characteristics. It is a 

portmanteau of ’deep learning’ and ’fake’. It 

originated from an anonymous individual under the 

pseudonym ’deepfake’ who uploaded numerous 

pornographic videos to the Reddit website. The 

actresses’ faces in the videos were swapped with 

those of other celebrities using deep learning [3, 4].  

Figure 1 outlines the examples of deepfake based 

on different generation methods. Based on the 

figure,  

 

• Puppet Master refers to the transfer of motion 

movement by synthesizing the motion of the 

source and regenerating onto the target output 

[5];  

• Face Swapping involves swapping the facial 

regions between two people from one to 

another [6];  

• Involve facial reenactment where Neural 

Textures focuses on deferred neural rendering 

to integrate neural textures in the parametric 

vectors for facial synthesis [7] while Face2Face 

uses GAN, such as CycleGAN and Star- GAN 

to achieve the synthesis output [8]; 
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• Present entire face synthesis to produce non-exist 

human outputs by the training on the different source 

data to capture their significant facial characteristics 

[9, 10];  

• Leverages GAN’s capability to modify certain facial 

attributes on target. 

 

 

Figure 1: Examples of Deepfake 

 

II. CONVOLUTIONAL NEURAL NETWORK 

CNN models excel at object recognition and 

classification when working with image databases. 

However, they come with challenges, including lengthy 

training times and the need for large datasets. Deep CNN 

models are necessary to extract both low-level and 

complex features from images, which further complicates 

the training process. Transfer learning offers a solution to 

these issues by utilizing pre-trained networks, allowing 

the parameters learned on one dataset to be applied to 

different problems. In this section, we explore the 

methodologies employed in this work.  

Plant disease datasets consist of numerous images of both 

infected and healthy plant samples, with each sample 

assigned to a specific class. For example, if we consider 

banana plants as a class, all images of healthy and 

diseased banana plants are mapped to that class. 

Classification of a target image relies on the features 

extracted from the source images. In the case of banana 

plants, the class includes four types of diseases: 

xanthomonas wilt, fusarium wilt, bunchy top virus, and 

black sigatoka. When a sample of one particular disease 

is used as input, and the model has been trained with all 

four disease samples under the banana class, the output 

during the testing phase will accurately classify the 

specific disease label among the four categories within 

that class. 

In multi-class classification, each category is mutually 

exclusive, meaning that each sample is assigned to only 

one category within the class. In contrast, multi-label 

classification treats each category within a class as a 

separate class. If there are N classes, we refer to N multi-

classes. If each of these N classes contains M categories, 

then each category within each of the N classes is 

considered its own class. 

 

 

Fig. 2: CNN Architecture 

 

2.1 DenseNet121 

Densely Connected Convolutional Network, is a type of 

convolutional neural network (CNN) that introduces 

dense connections between layers. Each layer receives 

input from all preceding layers, which encourages feature 

reuse and mitigates the vanishing gradient problem. 

DenseNet121, in particular, has 121 layers and is 

composed of several building blocks, including dense 

blocks, transition layers, and convolutional layers. 

DenseNet121's architecture encourages feature reuse, 

which reduces the number of parameters and mitigates 

the vanishing gradient problem, leading to improved 

training efficiency and accuracy. Dense connections 

allow the model to learn more complex features and 

improve gradient flow through the network, which is 

particularly beneficial for deep architectures. 

DenseNet121 is a powerful and efficient deep learning 

model designed to tackle complex image recognition 

tasks by leveraging dense connectivity patterns, ensuring 

robust feature propagation and gradient flow throughout 

the network. 

 

Initial Convolution Layer  

The network starts with a convolutional layer that 

performs a 7 × 7 convolution with 64 filters, followed by 

a 3 × 3 max pooling operation with a stride of 2. 

Mathematically, this can be expressed as: 

𝑋1 = 𝑅𝑒𝐿𝑈 (𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐶𝑜𝑛𝑣2𝐷(𝑋0, 64,7

× 7, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2))) 
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Where 𝑋0 is the input image, 𝑋1 is the output of the first 

convolutional layer and Conv2D denotes a 2D 

convolution. 

Dense blocks are the core components of DenseNet. Each 

dense block consists of multiple layers where each layer 

receives input from all previous layers within the block. 

If a dense block has L layers, the 𝑙 −th layer receives 

feature maps from all preceding layers {0, 1, … , 𝑙 − 1}. 
 

 
Fig. 3; DenseNet 121 Architecture 

 

For the 𝑙-th layer in a dense block: 

𝑋𝑙 = 𝐻𝑙([𝑋0, 𝑋1, . . . , 𝑋𝑙−1]) 

Where 𝐻𝑙  is a composite function of batch normalization 

(BN), ReLU, and Convolution (Conv). Specifically: 

𝐻𝑙(𝑋) = 𝐶𝑜𝑛𝑣 (𝑅𝑒𝐿𝑈(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑋))) 

 

Each layer produces 𝑘 feature maps, where 𝑘 is the 

growth rate. 

Between dense blocks, transition layers are used to 

control the complexity of the model and reduce the size 

of the feature maps. A transition layer consists of a 1x1 

convolution followed by a 2x2 average pooling with a 

stride of 2. 

 

𝑋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

= 𝐴𝑣𝑔𝑃𝑜𝑜𝑙2𝐷(𝐶𝑜𝑛𝑣2𝐷(𝑋𝑖𝑛𝑝𝑢𝑡 , 𝑓𝑖𝑙𝑡𝑒𝑟𝑠

= 𝜃 ∙ 𝑓𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑛𝑝𝑢𝑡 , 1 × 1), 𝑠𝑡𝑟𝑖𝑑𝑒 = 2) 

 

Where 𝜃 is the compression factor, typically set to 0.5, 

reducing the number of feature maps by half. 

 

III. PROPOSED METHODOLOGY 

The proposed hybrid deep learning model that combines 

DenseNet-121 and a custom Convolutional Neural 

Network (CNN) is to accurately identify plant diseases 

from the Plant Village dataset. 

 

Step 1: The input to the model is an image tensor 𝑋 with 

dimensions 256×256×3, as per the PlantVillage dataset. 

Detail of dataset is given in Table 1.   

𝑋 ∈ ℝ256×256×3 

Step 2: DenseNet-121 Base Layers: Apply the DenseNet-

121 model (pre-trained on ImageNet) to the input image. 

Exclude the top classification layers. 

𝐹𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 = 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡121(𝑋, 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑡𝑜𝑝

= 𝐹𝑎𝑙𝑠𝑒) 

Here, 𝐹𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 ∈ ℝ8×8×1024 (adjusted for the input size) 

Step 3: Global Average Pooling 

Apply global average pooling to the feature map to 

reduce its dimensions. 

 

𝑔 = 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷(𝐹𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡) 

The resulting vector 𝑔 ∈ ℝ1024 

Step 4:  The same input image tensor 𝑋 is used as input 

to the custom CNN 𝑋 ∈ ℝ256×256×3 

Step 5: Apply a convolutional layer with 32 filters of size 

3 × 3, followed by a ReLU activation function. 

 

𝐶1 = 𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣2𝐷(32, (3,3))(𝑋)) 

This operation results in an output tensor 𝐶1 ∈
ℝ254×254×32 

Step 6: Apply max pooling with a 2 × 2 window to 

reduce the spatial dimension. 

 

𝑃1 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷((2,2))(𝐶1) 

 

The resulting tensor 𝑃1 ∈ ℝ127×127×32 

 

Step 7: Apply a second convolutional layer with 64 filters 

of size 3 × 3, followed by a ReLU activation function. 

 

𝐶1 = 𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣2𝐷(64, (3,3))(𝑃1)) 

 

This operation results in an output tensor 𝐶2 ∈
ℝ125×125×64 

 

Step 8: Apply another max pooling with a 2 × 2 window. 

 

𝑃2 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷((2,2))(𝐶2) 

 

The resulting tensor 𝑃2 ∈ ℝ62×62×64 
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Step 9: Flatten the features maps to convert the 3D tensor 

into a 1D vector 

 

𝑓 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑃2) 

𝑃2 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔2𝐷((2,2))(𝐶2) 

The resulting tensor 𝑃2 ∈ ℝ246016 

 

Step 10: Apply a dense (fully connected) layer with 128 

units a ReLU activation function. 

𝑑 = 𝑅𝑒𝐿𝑈(𝐷𝑒𝑛𝑠𝑒(128)(𝑓)) 

The resulting vector 𝑑 ∈ ℝ128 

 

Step 11: Concatenate the outputs of DenseNet 121 (g) 

and the custom CNN (d). 

 

𝑧 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 ([𝑔, 𝑑]) 

The resulting concatenated vector 𝑧 ∈ ℝ1152 

 

Step 12: Apply a final dense layer for classification with 

the number of units equal to the number of classes in the 

PlantVillage dataset (num_classes=38), and a softmax 

activation function to produce the output probabilities. 

 

𝑦 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐷𝑒𝑛𝑠𝑒(38)(𝑧)) 

The results in a probability vector y∈ ℝ38 

 

Step 13: Compile the model with an appropriate 

optimizer (e.g., ‘adam’), loss function (e.g., 

‘categorical_crossentropy’), and metrics (e.g., 

‘accuracy’) 

 

Step 14: Train the model using the training data 

(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛) for a specified number of epochs and 

batch size with a validation split. 

 

Step 15: Evaluate the trained model on a separate test set 

to measure its performance. 

 

IV. RESULT ANALYSIS 

Performance metrics are critical for assessing the 

effectiveness of neural network learning models in image 

classification tasks, providing quantitative measures of 

their accuracy, reliability, and generalization capabilities. 

Several key performance metrics, along with their 

corresponding formulas, are commonly utilized in 

evaluating these models: 

 

Accuracy: Accuracy measures the proportion of 

correctly classified images out of the total number of 

images in the dataset. It is calculated as the ratio of the 

sum of true positive (TP) and true negative predictions 

(TN) to the total number of predictions. The formula for 

accuracy is: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 

  

Precision: Precision assesses the model's capacity to 

accurately recognize positive cases among all instances 

labeled as positive. It is determined by the ratio of true 

positive predictions to the total of true positive and false 

positive predictions. The formula for precision is: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall (Sensitivity): Recall quantifies the proportion of 

true positive cases correctly identified by the model out 

of all actual positive cases. It is calculated as the ratio of 

true positive predictions to the total of true positive and 

false negative predictions. The formula for recall is: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Specificity: Specificity evaluates the model's capability 

to accurately identify negative cases out of all instances 

classified as negative. It is determined by the ratio of true 

negative predictions to the total of true negative and false 

positive predictions. The formula for specificity is: 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

F1-score: The F1-score represents the harmonic mean of 

precision and recall, offering a balanced assessment of 

the model's performance. It is calculated as follows: 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Area under the Receiver Operating Characteristic 

Curve (AUC-ROC): AUC-ROC provides a summary of 

the model's overall performance across different 

classification thresholds by plotting the true positive rate 

(sensitivity) against the false positive rate (1-specificity). 

The AUC-ROC score ranges from 0 to 1, with higher 

values indicating better class discrimination. 

 

Confusion Matrix Analysis: The confusion matrix 

offers a comprehensive overview of the model's 

predictions, indicating the counts of true positives (TP), 

true negatives (TN), false positives (FP), and false 
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negatives (FN). Using the confusion matrix, various 

performance metrics, including accuracy, precision, 

recall, and specificity, can be calculated. 

 

Following are the Results of the Proposed DenseNet 

model: 

 

 
Figure 4: Training and Validation Accuracy 

 

 
Figure 5: Training and Validation Loss 

 

 

 

 

 

Qualitative Evaluation: 
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Quantitative Results: 

 
Figure 6: Confusion Matrix for Custom DenseNet121 model on test set 

 

 
Figure 7: ROC Curve for True and False Predictions 

 

Test performance: 

313/313 [==============================] - 21

5s 689ms/step - loss: 0.0727 - accuracy: 0.9734 

Test Loss: 0.0726810023188591 

Test Accuracy: 0.9733999967575073 

 
Figure 8: Classification Report on test Set 

 

Table 1 displays the results of Ali Raza et al. [1] and 

proposed method in terms of accuracy and precision. Ali 

Raza et al. [1] give an accuracy of 89%, & a precision of 

89% for CNN model, an accuracy of 90%, & a precision 

of 88% for VGG19 model, an accuracy of 88%, & a 

precision of 86% for MobileNet model, an accuracy of 

94%, & a precision of 95% for DFP model. The proposed 

DenseNet121 model provides an accuracy of 97.33% and 

a precision of 98%.   Clearly, the proposed DenseNet121 

model is a 3.421% improvement accuracy and 3.061% 

improvement precision compared to Ali Raza et al. [1]. 

Fig. 9 and figure 10 shows the graphical representation of 

the comparison result. 
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Table 1: Comparison Result 

Model Technique Accuracy 

Score 

Precision 

Score 

Dee Learning CNN 89% 89% 

Transfer 

Learning 

VGG16 90% 88% 

Transfer 
Learning 

MobileNet 88% 86% 

Dee Learning DFP 94% 95% 

Dee Learning Proposed 

DenseNet121 

97.33% 98% 

 

 

 
Figure 9: Graphical Accuracy 

 

 

Figure 10: Graphical Precision 

 

V. CONCLUSION 

The hybrid model developed for the Plant Village dataset 

demonstrates a robust approach to detecting diseases in 

plant leaves, leveraging a combination of DenseNet121 

and custom convolutional neural network (CNN) layers. 

DenseNet121, a powerful feature extractor pretrained on 

ImageNet, provides a strong foundation for capturing 

intricate patterns and features from the leaf images. This 

pretrained base is augmented by additional CNN layers 

designed to further refine and process these features, 

enhancing the model's ability to distinguish between 

deepfake image accurately. 

To enhance training efficiency, all but the last 50 layers 

of DenseNet121 are frozen, ensuring that the pre-trained 

knowledge is retained while allowing the final layers to 

be fine-tuned. The output from DenseNet121 is passed 

through a Global Average Pooling layer, reducing the 

feature maps to a single vector. 
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