
 
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online), Peer Reviewed Refereed Journal Volume 13, Issue 6, June 2024) 

49 

 

Analytical Study of Linear Operators and its Consequences  
Surya Kumar Yadav1, Khushbu Bharti Thakur2, Umesh Kumar Srivastava3 

1Department of Mathematics of P.G. Campus, Birat nagar, Nepal, Tribhuvan University, Nepal 
2Department of Computer Science & Engineering, Rawal Institute of Engineering & Technology, Faridabad, Haryana, India. 

3Department of Mathematics, R.S.S. College, Chochahan, Muzaffarpur – 844111,  B.R.A. Bihar University, Muzaffarpur – 

842001,  Bihar, India.  

Abstract--This paper presents the study of important classes 

of Linear operators on Hilbert Space including projections. 

Here, we discuss uses of Riesz Representation Theorem which 

characterizes Linear functional and observable of a system 

represented by a space “A” of Linear operators on a Hilbert 

space in its stability in Quantum Mechanical System with the 

property of positivity and Normalization. Here, it is proved in 

this paper that the theory of Linear operators find  its 

consequences in various problems of mathematical physics and 

Applied Mathematics. 
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I.INTRODUCTION 

Kothe (3, 4) , is the pioneer worker of the present area . In 

fact, the present work is the extension of work done by 

Wong, Yau – Chuen (9), Ghosh et al. (01), Ghosh et al. (02), 

Prasad et al. (05), Srivastava et al. (6), Srivastava et al . (7), 

and Srivastava et al. (8). In this paper we have studied a new 

Characterization of Linear operators and its Stability. 

Here, we use the following definitions, Notations and 

Fundamental Ideas:   

If M and N are subspaces of a Linear space X such that 

every xX can be written uniquely as x = y + z where y M 

& z N then the direct sum of M and N can also be written 

X= M  N where N is called complimentary subspace of M 

in X and if M  N = {0}, the decomposition x = y + z is 

unique. A given subspace M has many complimentary 

subspaces and every complimentary subspace of  M has the 

same dimension and the dimension of a complimentary 

subspace is called co-dimension of M in X , as if  X = R3 and 

M is a plane through the origin then any line through the 

origin that does not lie in M is a complimentary subspace.  

If    X = M  N then we define the projection P: X → X 

of X on to M along N by Px = y, where x = y+z with y  M 

, Z N which is Linear with ran P = M and ker P = N 

satisfying P2 = P . This property characterizes projections 

for which the following definitions and theorems follow : -  

Definition 1:  Any projection associated with a direct sum 

decomposition of a projection on a Linear space X is a linear 

map P:X → X such that P2 = P 

Definition 2: An orthogonal projection on a Hilbert space H 

is also a Linear mapping P:H → H satisfying P2 = P, <Px,y> 

= <x , Py>  for all x, y  H.  

“An orthogonal projection is necessarily bounded.” 

Theorem 1 :  Let X be a linear space, 

(i) If  P:X → X is a projection then X = ran P  kerP 

(ii) If X = M  N where M and N are Linear subspaces of 

X then there is a projection  

       P:X → X with ran P = M  and ker P = N. 

Proof: 

For (i) We show that x  ran P if x = Px 

If x = Px then clearly x  ran P 

If x ran P then x = Py for some y  x 

and since P2 = P which follows that Px = P2y = Py = x  

If x  ran P  kerP then x = Px & Px  = 0  So ran P  kerP 

= {0}. If x  X then  

We have x = Px + (x- Px) ; where Px  ran P and (x – Px) 

 kerP . 

Since P (x- Px) = Px - P2x = Px –Px = 0 

Thus X  = ran P  kerP. ………………………(1.1) 

Now for (ii) 

We consider if X = M N then x  N has unique 

decomposition x = y+z with  

y M & Z  N and Px = y defines the required Projection 

.  

In particular, in orthogonal subspaces while using Hilbert 

Space, let us  

suppose that  M is a closed subspace of Hilbert Space H 

then by well known property we have H = M M⊥ . We call 

the projection of H on to M along M⊥  the orthogonal 

projection of H on to M. 
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If x= y+z and x1 = y1 + z1 where y, y1  M and z, z1  M⊥ 

then by orthogonality of M and 

M⊥   <Px, x1> = <y, y1 +z1> = <y, y1>  = <y+z, y1> 

   = <x, Px1> …………… (1.2) 

Which states that an orthogonal projection is self Adjoint. 

We show the properties (1.1) and (1.2) characterize 

orthogonal projections with Defn-2 . 

Lemma :- If P is a non zero orthogonal projection then  P 

= 1 . 

Proof : - If x  H and Px ≠ 0 then by Cauchy Schwarz  

inequality , 

Therefore   P  ≤ 1. If  P ≠ 0 then there is an x H with 

Px ≠ 0 and  P( Px)  =  Px   so that  P ≥ 1. 

Thus, the Orthogonal Projection P and closed subspace M 

of H such that ran P = M will must obey one –one 

correspondence, then the kernel of Orthogonal Projection is 

the Orthogonal Complement of  M .  

Theorem.2 : - Let H be a Hilbert Space . 

(i) If P is an Orthogonal projection on H, then P is closed 

and H = ran P  ker P is orthogonal direct sum of ran P 

and kerP. 

(ii) If M is a closed subspace of H, then there is an 

Orthogonal Projection P on H with ran P = M and ker P. 

= M⊥ . 

Proof: - For (i), Let us consider P is an orthogonal Projection 

on H then by the 

Theorem . 1, we have  = ran P + ker P 

If x =Py  ran P and z  ker P, then <x, z> = <Py, z> = <y, 

Pz > = 0 so 

ran P ker P. Hence, we observe that H is the Orthogonal 

direct sum of ran P and ker P which follows that ran P = (ker 

P)⊥ , so ran P is closed. 

For (ii), Suppose that M is a closed subspace of H, then 

by well known property we have  

H = M M⊥  

Now we define a Projection P : H → H by Px = y where 

x = y+z with y ϵ M and z  M⊥ , then ran P = M and ker P = 

M⊥ , the orthogonality of P shown in theorem -1. 

If  P is an orthogonal Projection on H with range M and 

associated direct sum H= M  N then I-P is the Orthogonal 

Projection with range N and associated with Orthogonal 

direct sum H = N  M. 

Which completes the proof of theorem .2 

Example .1 – The space L2 (R) is the Orthogonal direct sum 

of space M of even functions and the space N of odd 

functions . 

The Orthogonal Projection P and Q of H onto M and N, 

respectively are given by 

  

Where I- P = Q. 

Example 2 – If  H = Rn, the orthogonal projection Pu in the 

direction of a unit vector u has the rank one matrix UuT. The 

component of a vector X in the direction U is 

PuX = (uT X) u 

Example 3 : - If H = L2 (T) is the space of 2- Periodic 

function and u = 1/2 is the constant function with norm 

one, then the Orthogonal projection Pu maps a function to its 

mean :  

Pu f = < f > 

Where < f > = 1/2  ∫ 𝒇(𝒙) 𝒅𝒙
𝟐

𝟎
 

The corresponding Orthogonal decomposition, 

f(x) = < f > + f / (x) decompose a function in to a constant 

mean part < f > and a fluctuating part f /  with zero mean .  

Example: 4  Suppose H = L2 (T), then for each n  Z the 

functional  

n : L2(T) → C,  n (f) = 1 /2 ∫T f(x) e-inx dx that maps a 

function to its nth Fourier coefficient is a bounded linear 

functional. We also have   n  = 1 for every n  Z .  

Proposition : (a) A Linear functional on a Complex Hilbert 

space H is a Linear map from H to C. A Linear functional  

is bounded or continuous, if there exists a constant M such 

that   (x)  ≤ M  x  for all x  H . 
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The norm of bounded linear functional  is   

   = sup  (x)  

             x  = 1 

If   y  H then y (x) = < y, x > is a bounded Linear 

functional on H, with  y  =  y . 

(b) If  is a bounded Linear functional on a Hilbert space 

H, then there is a unique vector y  H such that 

 (x) = < y, x> for all  x  H 

Thus, from above definitions, theorems, Lemma, 

examples & propositions  (a) & (b) which shows duality of 

Hilbert space and Riesz representation have the main Result 

as follows : - 

II.MAIN RESULT 

In Quantum Mechanics, the observable of a system are 

represented by a space “A “ of Linear operators on Hilbert 

space H. A state 𝒘 of a quantum mechanical system is a 

linear functional 𝒘 on the spaces  A  of observables with the 

following two properties . 

(i) 𝒘 (A *A) ≥ 0 for all A  A 

(ii) 𝒘  (I) = 1 

Where 𝒘 (A ) is the expected value of the observable A 

when the system is in the state 𝒘. Condition (i) is called 

positivity and condition (ii) is called normalization . 

III.PROOF OF THE MAIN RESULT  

Suppose that H = Cn and A is the space of all n x n 

complex matrices, Then A is a Hilbert space with the inner 

product given by  

<A, B>  = tr A*B 

Now, by the Riesz representation theorem for each state 

𝒘 there is a unique   A  such that 𝒘 (A) = tr * A for all 

A  A  and then by conditions of positivity and 

normalization translate into 

 

 

 

 

 

 

 

 

 

 

 

 

 ≥ 0 and tr  = 1 respectively.  

Hence Proved .  
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