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Abstract-- This paper presents the study of Static perfect 

Fluid Spheres in Einstein – cartan theory. Here, we consider E 

– C field equations for static fluid spheres by adopting 

Tolman’s technique. Here, it is proved in this paper that the 

field equations can be solved in two cases by calculating 

pressure and density for the distribution. 
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I.INTRODUCTION 

Arkuszewski, W.(1), and Banerjee, S. (2) and Prasanna, 

A.R.(6) are the pioneer workers of the present area. In fact, 

the present work is the extension of work done by Bowers, 

R.L. and Liang, E.P.T. (3), Cartan, E (4, 5), Ray Chaudhary, 

A.K. et. al. (7), Singh, T. et. al. (8), Tolman, R.C. (9), and 

Yadav, et. al. (10 & 11). In this paper, we have studied Static 

Perfect Fluid Spheres in Einstein – Certan Theory. 

Here, we use the following Fundamental Ideas: 

In recent years much interest has been focused in 

Einstein-Cartan theory. As a matter of fact the general theory 

of relativity which has been considered as “most beautiful 

creation of single mind” has enjoyed success wherever a test 

has been possible.  

The general theory of relativity has also led under general 

considerations to the existence of singularities in the 

universe. Since the singularity is not a desirable feature for 

any physical theory, is it possible to keep this beautiful 

theory unmolested with regard to its success but at the same 

time modify it so as to prevent singularities. The answer 

seems to be in affirmative if one considers the most natural 

generalization of Einstein’s theory as originally suggested 

by Cartan which is now known as Einstein-Cartan theory (or 

Einstein-Cartan theory). In this theory the intrinsic spin of 

matter is incorporated as the source of torsion of the space-

time manifold. According to the relativistic quantum 

mechanics mass and spin are two fundamental characters of 

an elementary particle system. The energy momentum is 

source of curvature. By introducing torsion and relating it to 

the density of intrinsic angular momentum the Einstein-

Cartan theory restores the analogy between mass and spin 

which extends to the principle of equivalence at least in its 

weak form. According to this principle the world line of a 

spin less test particle moving under the influence of 

gravitational fields only depends on its initial position and 

velocity but not on its mass. 

II.MATHEMATICAL TREATMENT OF THE PROBLEM 

1. The Field Equations 

The Einstein-Cartan field equations are 
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where 
i

jkQ  is torsion tensor, 
i

jt  is the canonical asymmetric energy momentum tensor 
k

ijS  is the spin tensor, k = −8 

Here we take a static spherically symmetric matter distribution represented by the line element. 

ds2 = − e2 dr2 − r2 d2 − r2 sin2 d2 + e2 dt2    (3) 

 where  &  are functions of r alone. If ' represents an orthonormal conframe, than we have 

dtedrrddre   ==== 4321 ,  θsinθ,θ θ , θ .   (4) 

The metric (3) now becomes 



 
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 13, Issue 12, December 2024) 

90 

 ( ) ( ) ( ) ( ) 242322212 θθθθ −++−=ds  

so that 

  1,1,1,1   −−−= diaggij  

Assuming that the spins of the individual particles composing the fluid are all aligned in the radical direction we get for the 

spin tensor Sij the only independent non-zero component to be S23 = K, say. Since the fluid is supposed to be static, we have the 

velocity  

Four-vector 
ii δu 4= . 

Thus the non-zero components of 
i

jkS  are 

   KSS =−= 4

32

4

23 .       (5) 

Hence from the Cartan equation (2), we get for 
i

jkQ  the components 

  kKQQ −=−= 4

32

4

23        (6) 

and the others are zero  

Using (6) in (3) we can obtain the torsion two-form (H)' to be  

 
324321  000 θkK,(H),(H), (H)(H) −====  .   (7) 

Once we have the torsion form we can use it in (3) along with (4) and solve the components of 
k

lω , which in the present case 

turn out to be 
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Using (8) in (4), we get the curvature form 
k

lΩ  to be 
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Equations (4) and (9) together give  
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The Ricci tensor Rij and scalar of curvature R are therefore given by  



 
International Journal of Recent Development in Engineering and Technology 

Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 13, Issue 12, December 2024) 

92 

 







−−+−= −

r

α
βαββeR

'
'''''α 2

 22

11   ,     (11) 

 ( ) 
22

2

3322

1
1

r
αβr 

r

e
RR ''

α

+−+−==
−

 , 

 
2222

44
2

12
Kk

r

β
βαββeR

'
'''''α +








+−+= −

, 

 ( ) 22

2

2

2 2

1211
2 kKαβ

r
βαββ

r
e

r
R '''''' 'α +








−+−++









−−= −
         (12) 

with Rij = 0, i   j. Hence the Einstein tensor Gij = Rij  jiRg
2

1
− is found to have the non-zero components.  
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Since we are considering a perfect fluid distribution with isotropic pressure p and matter density ρ, we have 
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Using (6) we get then the non-zero components 
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Hence, using (13) and (15), the field equations (1) may be written as 
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 The conservation laws give us the relations 

 ( )  0 =+ 'upρ. (matter conservation),     (19) 
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If we assume the equation of hydrostatic equilibrium to hold as in general relativity, namely 
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.       (22) 

We get the additional equation  

 OK βK '' =+ .        (23) 

Solving for K we get 
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where H is a constant of integrations to be determined. Setting 
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where K = He−  where H is a constant  
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In principle, we now have a completely determined 

system if an equation of state is specified. However, it is well 

known that in practice this set of equations is formidable to 

solve using a reassigned equation of state, except perhaps for 

the case ρ = p, which may not be physically meaningful.  

Secondly, we have the question of boundary conditions to 

be chosen for fitting the solutions in the interior and the 

exterior of the state. A very interesting aspect of the 

Einstein-Cartan theory is that outside the fluid distribution 

the equations reduce to Einstein's equations for empty space, 

viz., Rij = 0, since there is no spin density. 

Following Hehl's approach, if we define 

  
22 K 2πρ ,K 2πpp −−=       (28) 

then we find that the equations take the usual general relativistic form for a static fluid sphere as given by 
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with (27) remaining the same. The equation of continuity (21) now becomes 

   ( ) 0β pρ
dr

pd ' =++  .      (31) 

It is clear from these equations that it is the p and not the p which is continuous across the boundary r = a, of the fluid sphere. 

The continuity of p  across the boundary ensures that of ' (exp.2). Further with p  and ρ replacing p and ρ respectively we 

are assured that the metric coefficients are continuous across the boundary. Hence we shall apply the usual boundary conditions 

to the solution of equations (27), (29) and (30). We use the boundary conditions 
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and 

 a at rp == 0         (33) 

where a is the radius of the fluid sphere and m is the mass of the fluid sphere. The total mass as observed by an external observer, 

inside the fluid sphere of radius a is given by 
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Thus, the total mass of the fluid sphere is modified by the correction 
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Equations (29), (30) and (31) are the same as obtained by Tolman [145], so we can use the same solutions for our discussion. 

Assuming that the sphere has a finite radius r = a for r > a, since the equations are Rij = 0, we have by Birkhoff's theorem the 

space-time metric represented by the Schwarzschild solution 
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where m is a constant associated with the mass of the sphere. 

III.SOLUTIONS 

Case (I): Here we assume 

  
62 λre β =         (36) 

where λ is constant. 

Then solving equation (27) for  we get 
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where v is constant. 

Thus, the line element is given by 
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Using boundary conditions the constants are found to be 
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The pressure and density are evaluated to be 
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Case (II) : Here we assume 

  cre β =2
        (42) 

where c is a constant. 
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Using (42) in (27), after calculations we get  finally as 
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where B is a constant.  

Thus the line element is given by  
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The pressure and density are given by 
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The spin density K is given by 
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aH
K

2
2 2
=  .        (48) 

IV. CONCLUSION 

We conclude that  the predictions of Einstein-Cartan 

theory differ from those of general relativity only for matter 

filled regions, therefore besides cosmology, an important 

application field of Einstein-Cartan theory is relativistic 

astrophysics which deals with the theories of stellar objects 

like neutron stars with some alignment of spins of the 

constituent particles. Hence it is desirable to understand the 

full implication of the Einstein-Cartan theory for finite 

distributions like fluid spheres with non-zero pressure. 
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